Synergism of the Binary Wear Process of Machinery Elements Used for Gaining Energy Raw Materials

Author:

Wieczorek Andrzej N.ORCID,Wójcicki Mateusz

Abstract

During an in-situ operation of machines, used for the exploitation of energy raw materials, a damaging impact of the environment on the components of these machines is experienced. The action of degrading factors is mostly shown in the form of a clear synergistic effect. In particular, this effect can be seen during an exploitation of driving elements of scraper conveyors, used as one of the basic machines in the hard coal mining process. In the article, the subject–matter, connected with an operation of sprockets in scraper conveyors, is presented. Special attention is paid to a mutual reaction of the mineral abrasive and the presence of mine water. The main objective of the research work was a determination of the interactive component of the factor causing an abrasive wear–quartz abrasive connected with the associated action and the factor intensifying electrochemical corrosion–water with and without the NaCl salt content. Experimental tests were conducted in the conditions similar to the reality, with the use of a test rig in the form of a short scraper conveyor. Within the framework of the test abrasive wear rates for the case of the abrasive presence itself and a mixture of the abrasive, salt and water were determined. Based on the obtained results, it appears that there is a synergistic impact of abrasive–corrosive mixtures on the wear of the surface layer of the chain sprockets under testing, and also, the causes of the interactive component values in the function of hardness and maximum strength of the materials under investigation are presented.

Funder

Polish Agency for Entrepreneurship Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3