The Application Potential of Artificial Intelligence and Numerical Simulation in the Research and Formulation Design of Drilling Fluid Gel Performance

Author:

Sheng Keming1,He Yinbo2,Du Mingliang2,Jiang Guancheng23

Affiliation:

1. College of Information Science and Engineering/College of Artificial Intelligence, China University of Petroleum (Beijing), Beijing 102249, China

2. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China

3. National Engineering Research Center of Oil & Gas Drilling and Completion Technology, Beijing 102249, China

Abstract

Drilling fluid is pivotal for efficient drilling. However, the gelation performance of drilling fluids is influenced by various complex factors, and traditional methods are inefficient and costly. Artificial intelligence and numerical simulation technologies have become transformative tools in various disciplines. This work reviews the application of four artificial intelligence techniques—expert systems, artificial neural networks (ANNs), support vector machines (SVMs), and genetic algorithms—and three numerical simulation techniques—computational fluid dynamics (CFD) simulations, molecular dynamics (MD) simulations, and Monte Carlo simulations—in drilling fluid design and performance optimization. It analyzes the current issues in these studies, pointing out that challenges in applying these two technologies to drilling fluid gelation performance research include difficulties in obtaining field data and overly idealized model assumptions. From the literature review, it can be estimated that 52.0% of the papers are related to ANNs. Leakage issues are the primary concern for practitioners studying drilling fluid gelation performance, accounting for over 17% of research in this area. Based on this, and in conjunction with the technical requirements of drilling fluids and the development needs of drilling intelligence theory, three development directions are proposed: (1) Emphasize feature engineering and data preprocessing to explore the application potential of interpretable artificial intelligence. (2) Establish channels for open access to data or large-scale oil and gas field databases. (3) Conduct in-depth numerical simulation research focusing on the microscopic details of the spatial network structure of drilling fluids, reducing or even eliminating data dependence.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3