Multi-Messenger Radio Frequency and Optical Diagnostics of Pulsed Laser Ablation Processes

Author:

Samimi Mahdieh,Hosseinlaghab Hassan,McCarthy ÉannaORCID,McNally Patrick J.ORCID

Abstract

In this report, a novel non-contact, non-invasive methodology for near and quasi real-time measurement of the structuring of metal surfaces using pulsed laser ablation is described. This methodology is based on the use of a multi-messenger data approach using data from Optical Emission Spectroscopy (OES) and Radio Emission Spectroscopy (RES) in parallel. In this research, radio frequency (RF) emission (in the range of 100–400 MHz) and optical emission (200–900 nm) were investigated and acquired in real-time. The RES and OES data were post-processed and visualized using heat maps, and, because of the large data sets acquired particularly using in RES, Principal Component Analysis (PCA) statistics were used for data analysis. A comparison between in-process RES-OES data and post-process 3D images of the different ablated holes generated by a picosecond laser with different powers (1.39 W, 1.018 W, and 0.625 W) on aluminum (Al) and copper (Cu) was performed. The real-time time-series data acquired using the Radio and Optical Emission Spectroscopy technique correlate well with post-process 3D microscopic images. The capability of RES-OES as an in operando near real-time diagnostic for the analysis of changes of ablation quality (cleanliness and symmetry), and morphology and aspect ratios (including the diameter of ablated holes) in the process was confirmed by PCA analysis and heat map visualization. This technique holds great promise for in-process quality detection in metal micromachining and laser-metal base manufacturing.

Funder

Science Foundation Ireland

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3