Abstract
In this report, a novel non-contact, non-invasive methodology for near and quasi real-time measurement of the structuring of metal surfaces using pulsed laser ablation is described. This methodology is based on the use of a multi-messenger data approach using data from Optical Emission Spectroscopy (OES) and Radio Emission Spectroscopy (RES) in parallel. In this research, radio frequency (RF) emission (in the range of 100–400 MHz) and optical emission (200–900 nm) were investigated and acquired in real-time. The RES and OES data were post-processed and visualized using heat maps, and, because of the large data sets acquired particularly using in RES, Principal Component Analysis (PCA) statistics were used for data analysis. A comparison between in-process RES-OES data and post-process 3D images of the different ablated holes generated by a picosecond laser with different powers (1.39 W, 1.018 W, and 0.625 W) on aluminum (Al) and copper (Cu) was performed. The real-time time-series data acquired using the Radio and Optical Emission Spectroscopy technique correlate well with post-process 3D microscopic images. The capability of RES-OES as an in operando near real-time diagnostic for the analysis of changes of ablation quality (cleanliness and symmetry), and morphology and aspect ratios (including the diameter of ablated holes) in the process was confirmed by PCA analysis and heat map visualization. This technique holds great promise for in-process quality detection in metal micromachining and laser-metal base manufacturing.
Funder
Science Foundation Ireland
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献