Author:
Hou Qinglian,Zhou Cheng,Wan Rong,Zhang Junbo,Xue Feng
Abstract
Tuna fish school detection provides information on the fishing decisions of purse seine fleets. Here, we present a recognition system that included fish shoal image acquisition, point extraction, point matching, and data storage. Points are a crucial characteristic for images of free-swimming tuna schools, and point algorithm analysis and point matching were studied for their applications in fish shoal recognition. The feature points were obtained by using one of the best point algorithms (scale invariant feature transform, speeded up robust features, oriented fast and rotated brief). The k-nearest neighbors (KNN) algorithm uses ‘feature similarity’ to predict the values of new points, which means that new data points will be assigned a value based on how closely they match the points that exist in the database. Finally, we tested the model, and the experimental results show that the proposed method can accurately and effectively recognize tuna free-swimming schools.
Funder
National key R&D Program of china
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献