Electroosmosis-Optimized Thermal Model for Peristaltic Transportation of Thermally Radiative Magnetized Liquid with Nonlinear Convection

Author:

Akbar YasirORCID,Alotaibi HammadORCID

Abstract

The present study addresses the heat transfer efficiency and entropy production of electrically conducting kerosene-based liquid led by the combined impact of electroosmosis and peristalsis mechanisms. Effects of nonlinear mixed convection heat transfer, temperature-dependent viscosity, radiative heat flux, electric and magnetic fields, porous medium, heat sink/source, viscous dissipation, and Joule heating are presented. The Debye–Huckel linearization approximation is employed in the electrohydrodynamic problem. Mathematical modeling is conducted within the limitations of δ << 1 and Re → 0. Coupled differential equations after implementing a lubrication approach are numerically solved. The essential characteristics of the production of entropy, the factors influencing it, and the characteristics of heat and fluid in relation to various physical parameters are graphically evaluated by assigning them a growing list of numeric values. This analysis reveals that heat transfer enhances by enhancing nonlinear convection and Joule heating parameters. The irreversibility analysis ensures that the minimization of entropy generation is observed when the parameters of viscosity and radiation are held under control. Fluid velocity can be regulated by adjusting the Helmholtz–Smoluchowski velocity and magnetic field strength.

Funder

Taif University

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3