Wire Electrical Discharge Machining of AISI304 and AISI316 Alloys: A Comparative Assessment of Machining Responses, Empirical Modeling and Multi-Objective Optimization

Author:

Aboueleaz Mona A.1ORCID,Naeim Noha2,Abdelgaliel Islam H.34ORCID,Aly Mohamed F.3,Elkaseer Ahmed256ORCID

Affiliation:

1. Production Engineering and Mechanical Design Department, Faulty of Engineering, Mansoura University, Mansoura 35516, Egypt

2. Department of Production Engineering and Mechanical Design, Faculty of Engineering, Port Said University, Port Fuad 42526, Egypt

3. Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt

4. Department of Mechanical Engineering, Faculty of Engineering, Fayoum University, Fayoum 63514, Egypt

5. Department of Mechanical Engineering, Faculty of Engineering, The British University in Egypt (BUE), El-Sherouk City 11837, Egypt

6. Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Abstract

This research investigates the multi-response of both material removal rate (MRR) and surface roughness (Ra) for the wire electrical discharge machining (WEDM) of two stainless steel alloys: AISI 304 and AISI 316. Experimental results are utilized to compare the machining responses obtained for AISI 316 with those obtained for AISI 304, as previously reported in the literature. The experimental work is conducted through a full factorial experimental design of five running parameters with different levels: applied voltage, transverse feed, pulse-on/pulse-off times and current intensity. The machined workpieces are analyzed using an image processing technique in order to evaluate the size of cut slots to allow the calculation of the MRR. Followed by the characterization of the surface roughness along the side walls of the slots. Different mathematical regression techniques were developed to represent the multi-response of both materials using the MATLAB regression toolbox. It was found that WEDM process parameters have a fuzzy influence on the responses of both material models. This allowed for multi-objective optimization of the regression models using four different techniques: multi-objective genetic algorithm (MOGA), multi-objective pareto search algorithm (MOPSA), weighted value grey wolf optimizer (WVGWO) and osprey optimization algorithm (OOA). The optimization results reveal that the optimal WEDM parameters of each response are inconsistent to the others. Hence, the optimal results are considered a compromise between the best results of different responses. Noteworthily, the multi-objective pareto search algorithm outperformed the other candidates. Eventually, the optimal results of both materials share the high voltage, high transverse feed rate and low pulse-off time parameters; however, AISI 304 requires low pulse-on time and current intensity levels while AISI 316 optimal results entail higher pulse-on time and current levels.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3