The Potential Changes and Stereocilia Movements during the Cochlear Sound Perception Process

Author:

Liu Bin12,Liang Junyi3,Yao Wenjuan12ORCID,Xu Chun4

Affiliation:

1. School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China

2. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

3. Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA

4. Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

Abstract

Sound vibrations generate electrical signals called cochlear potentials, which can reflect cochlear stereocilia movement and outer hair cells (OHC) mechanical activity. However, because the cochlear structure is delicate and complex, it is difficult for existing measurement techniques to pinpoint the origin of potentials. This limitation in measurement capability makes it difficult to fully understand the contribution of stereocilia and transduction channels to cochlear potentials. In view of this, firstly, this article obtains the stereocilia movement generated by basilar membrane (BM) vibration based on the positional relationship between the various structures of the organ Corti. Secondly, Kirchhoff’s law is used to establish an electric field model of the cochlear cavity, and the stereocilia movement is embedded in the electric field by combining the gated spring model. Finally, a force-electric coupling mathematical model of the cochlea is established. The results indicated that the resistance variation between different cavities in the cochlea leads to a sharp tuning curve. As the displacement of the BM increased, the longitudinal potential along the cochlea continued to move toward the base. The decrease in stereocilia stiffness reduced the deflection angle, thereby reducing the transduction current and lymphatic potential.

Funder

Key Project of the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3