Pairs of Positive Solutions for a Carrier p(x)-Laplacian Type Equation

Author:

Candito Pasquale1ORCID,Failla Giuseppe2ORCID,Livrea Roberto3

Affiliation:

1. Department of Civil, Energy, Environmental and Material Engineering (DICEAM), University of Reggio Calabria, Via Zehender, Località Feo di Vito, 89122 Reggio Calabria, Italy

2. Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy

3. Department of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, 90123 Palermo, Italy

Abstract

The existence of multiple pairs of smooth positive solutions for a Carrier problem, driven by a p(x)-Laplacian operator, is studied. The approach adopted combines sub-super solutions, truncation, and variational techniques. In particular, after an explicit computation of a sub-solution, obtained combining a monotonicity type hypothesis on the reaction term and the Giacomoni–Takáč’s version of the celebrated Díaz–Saá’s inequality, we derive a multiplicity of solution by investigating an associated one-dimensional fixed point problem. The nonlocal term involved may be a sign-changing function and permit us to obtain the existence of multiple pairs of positive solutions, one for each “positive bump” of the nonlocal term. A new result, also for a constant exponent, is established and an illustrative example is proposed.

Funder

Research project of MIUR (Italian Ministry of Education, University and Research) Prin 2022 “Nonlinear differential problems with applications to real phenomena”

Publisher

MDPI AG

Reference59 articles.

1. Kirchhoff, G.R. (1876). Vorlesungen über Mathematiche Physik: Mechanik, Teuber.

2. On the non-linear vibration problem of the elastic string;Carrier;Quart. Appl. Math.,1945

3. On some questions in boundary value problems of mathematical physics;Lions;N.-Holl. Math. Stud.,1978

4. Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method;Alves;Nonlinear Anal. Real World Appl.,2015

5. Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano theorem;Arcoya;Acta Appl. Math.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3