On the Optimization of Kubernetes toward the Enhancement of Cloud Computing

Author:

Mondal Subrota Kumar1ORCID,Zheng Zhen1,Cheng Yuning1

Affiliation:

1. School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China

Abstract

With the vigorous development of big data and cloud computing, containers are becoming the main platform for running applications due to their flexible and lightweight features. Using a container cluster management system can more effectively manage multiocean containers on multiple machine nodes, and Kubernetes has become a leader in container cluster management systems, with its powerful container orchestration capabilities. However, the current default Kubernetes components and settings have appeared to have a performance bottleneck and are not adaptable to complex usage environments. In particular, the issues are data distribution latency, inefficient cluster backup and restore leading to poor disaster recovery, poor rolling update leading to downtime, inefficiency in load balancing and handling requests, poor autoscaling and scheduling strategy leading to quality of service (QoS) violations and insufficient resource usage, and many others. Aiming at the insufficient performance of the default Kubernetes platform, this paper focuses on reducing the data distribution latency, improving the cluster backup and restore strategies toward better disaster recovery, optimizing zero-downtime rolling updates, incorporating better strategies for load balancing and handling requests, optimizing autoscaling, introducing better scheduling strategy, and so on. At the same time, the relevant experimental analysis is carried out. The experiment results show that compared with the default settings, the optimized Kubernetes platform can handle more than 2000 concurrent requests, reduce the CPU overhead by more than 1.5%, reduce the memory by more than 0.6%, reduce the average request time by an average of 7.6%, and reduce the number of request failures by at least 32.4%, achieving the expected effect.

Funder

Science and Technology Development Fund of Macao, Macao SAR

Publisher

MDPI AG

Reference59 articles.

1. Dynamic resource allocation using virtual machines for cloud computing environment;Xiao;IEEE Trans. Parallel Distrib. Syst.,2012

2. Huang, K., and Chen, H. (2013, January 9–11). The Applied Research on the Virtualization Technology in Cloud Computing. Proceedings of the 1st International Workshop on Cloud Computing and Information Security, Shanghai, China.

3. Containers and cloud: From lxc to docker to kubernetes;Bernstein;IEEE Cloud Comput.,2014

4. Docker: Lightweight linux containers for consistent development and deployment;Merkel;Linux j,2014

5. Containerization technologies: Taxonomies, applications and challenges;Bentaleb;J. Supercomput.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3