Inversion of Soil Organic Matter Content Based on Improved Convolutional Neural Network

Author:

Ma Li,Zhao Lei,Cao LiyingORCID,Li Dongming,Chen Guifen,Han Ye

Abstract

Soil organic matter (SOM) is an important source of nutrients required during crop growth and is an important component of cultivated soil. In this paper, we studied the possibility of using deep learning methods to establish a multi-feature model to predict SOM content. Moreover, using Nong’an County of Changchun City as the study area, Sentinel-2A remote sensing images were taken as the data source to construct the dataset by using field sampling and image processing. The LeNet-5 convolutional neural network model was chosen as the deep learning model, which was improved based on the basic model. The evaluation metrics were selected as the root mean square error (RMSE) and the coefficient of determination R2. Through comparison, the R2 of the improved model was found to be higher than that of the linear regression method, Support Vector Machines (SVM) (RMSE = 2.471, R2 = 0.4035), and Random Forest (RF) (RMSE = 2.577, R2 = 0.4913). The result shows that: (1) It is feasible to use the multispectral data extracted from remote sensing images for soil organic matter content inversion based on the deep learning model with a minimum RMSE of 2.979 and with the R2 reaching 0.89. (2) The choice of features has an impact on the prediction of the model to a certain extent. After ranking the importance of features, selecting the appropriate number of features for inversion provides better results than full feature inversion, and the computational speed is improved.

Funder

National Natural Science Foundation of China

Jilin Provincial Department of Education Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3