Tryptase-Positive Mast Cells Promote Adipose Fibrosis in Secondary Lymphedema through PDGF

Author:

Nuri Takashi1,Jin Denan2ORCID,Takai Shinji2ORCID,Ueda Koichi1

Affiliation:

1. Department of Plastic and Reconstructive Surgery, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan

2. Department of Innovative Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan

Abstract

Lymphedema is a chronic and progressive condition that causes physical disfigurement and psychological trauma due to the accumulation of lymphatic fluid in the interstitial space. Once it develops, lymphedema is difficult to treat because it leads to the fibrosis of adipose tissue. However, the mechanism behind this remains unclear. The purpose of this study was to investigate the involvement of mast cells (MCs) in the adipose tissues of patients with lymphedema. We found that fibrosis spread through blood vessels in the adipose tissues of lymphedema patients, and the expression of the collagen I and III genes was significantly increased compared to that of those in normal adipose tissue. Immunostaining of vimentin and α-smooth muscle actin showed that fibroblasts were the main cellular components in severely fibrotic regions. Toluidine blue staining confirmed a significant increase in the number of MCs in the adipose tissues of lymphedema patients, and immunostaining of serial sections of adipose tissue showed a significant increase in the number of tryptase-positive cells in lymphedema tissues compared with those in normal adipose tissues. Linear regression analyses revealed significant positive correlations between tryptase and the expressions of the TNF-α, platelet-derived growth factor (PDGF)-A, and PDGFR-α genes. PDGF-A–positive staining was observed in both fibroblasts and granules of tryptase-positive MCs. These results suggest that MC-derived tryptase plays a role in the fibrosis of adipose tissue due to lymphedema directly or in cooperation with other mediators.

Funder

SBC Medical Promotion.

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3