Abstract
Silicon micropillars with tunable sizes are successfully fabricated on copper foils by using nanosecond-pulsed laser irradiation and then used as anodes for lithium-ion batteries. The size of the silicon micropillars is manipulated by using different slurry layer thicknesses ranging from a few microns to tens of microns. The effects of the pillar size on electrochemical properties are thoroughly investigated. The smaller the pillars, the better the electrochemical performance. A capacity of 1647 mAh g−1 at 0.1 C current rate is achieved in the anode with the smallest pillars, with 1215, 892, and 582 mAh g−1 at 0.2, 0.5, and 1.0 C, respectively. Although a significant difference in discharge capacity is observed in the early period of cycling among micropillars of different sizes, this discrepancy becomes smaller as a function of the cycle number. Morphological studies reveal that the expansion of micropillars occurred during long-term cycling, which finally led to the formation of island-like structures. Also, the formation of a solid electrolyte interphase film obstructs Li+ diffusion into Si for lithiation, resulting in capacity decay. This study demonstrates the importance of minimizing the pillar size and optimizing the pillar density during anode fabrication.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献