The Corrosion and Wear-Corrosion of the Iron-Base Amorphous Coating Prepared by the HVOF Spraying

Author:

Liao Pin-Hsun1,Jian Jing-Wei2,Tsay Leu-Wen1ORCID

Affiliation:

1. Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan

2. Chung Yo Materials Co., Ltd., Kaohsiung 82059, Taiwan

Abstract

In this work, the corrosion behaviors of an iron-based amorphous coating produced by high-velocity oxy-fuel (HVOF) spraying were investigated. Potentiodynamic and potentiostatic polarization and corrosion pin-on-ring (corrosion-wear) tests were conducted to evaluate the corrosive properties of the coating as compared with the 316L substrate. The corrosion behaviors of the 316L substrate and coated sample were tested in 3.5 wt.% NaCl, 1 M HCl, and 0.5 M H2SO4 solutions. In the 3.5 wt.% NaCl and 1 M HCl solutions, the corrosion resistance of the coating was a little inferior or equivalent to that of the 316L substrate after potentiodynamic polarization tests. In the 0.5 M H2SO4 solution, the two tested samples exhibited wide passivated zones in the polarization curves. In such a mild acid, the corrosion resistance of the 316 substrate was superior to that of the amorphous coating, possibly due to the presence of defects in the coating. After potentiodynamic polarization tests, the linkage of initial fine pits into large, deep pores was seen in the corroded 316L substrate. By contrast, extensive corrosion along with preferentially corroded defective sites was seen in the coating. Moreover, the coating exhibited a much higher resistance to corrosion-wear, or low weight loss, in 3.5 wt.% NaCl solution. After the corrosion-wear tests, deep furrows were present in the 316L substrate, whereas a rubbed smooth surface and a corroded zone were seen in the coating. The greater weight loss of the 316L substrate confirmed its poor resistance to corrosion-wear relative to the amorphous coating in 3.5 wt.% NaCl solution.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3