Impacts of High Fructose Diet and Chronic Exercise on Nitric Oxide Synthase and Oxidative Stress in Rat Kidney

Author:

Hu Gaizun12,Xu Lusi23,Ito Osamu3ORCID

Affiliation:

1. Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA

2. Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai 983-8536, Japan

3. Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan

Abstract

Chronic exercise (Ex) exerts antihypertensive and renoprotective effects in rats fed a high fructose diet (HFr). To elucidate the mechanisms, the impacts of an HFr and Ex on the nitric oxide (NO) system and oxidative stress in the kidney were examined. Rats were fed a control diet or an HFr, and a part of the HFr-fed rats underwent treadmill running for 12 weeks. The HFr did not affect nitrate/nitrite (NOx) levels in plasma and urine, and Ex increased the NOx levels. The HFr increased thiobarbituric acid reactive substance (TBARS) levels in plasma and urine, and Ex decreased the HFr-increased TBARS levels in plasma. The HFr increased the neuronal and endothelial NO synthase (nNOS and eNOS) expressions, and Ex enhanced the HFr-increased eNOS expression. The HFr inhibited the eNOS phosphorylation at serine 1177, and Ex restored the HFr-inhibited eNOS phosphorylation. The HFr increased xanthine oxidase and NADPH oxidase activities, and Ex restored the HFr-increased xanthine oxidase activity but enhanced the HFr-increased NADPH oxidase activity. The HFr increased the nitrotyrosine levels, and Ex attenuated the HFr-increased levels. These results indicate that although Ex enhances the HFr-increased eNOS expression and NADPH oxidase activity, an HFr inhibits renal eNOS phosphorylation and NO bioavailability, whereas Ex ameliorates them.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3