Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform

Author:

Zhou Chengquan,Ye Hongbao,Hu Jun,Shi Xiaoyan,Hua Shan,Yue Jibo,Xu Zhifu,Yang GuijunORCID

Abstract

The number of panicles per unit area is a common indicator of rice yield and is of great significance to yield estimation, breeding, and phenotype analysis. Traditional counting methods have various drawbacks, such as long delay times and high subjectivity, and they are easily perturbed by noise. To improve the accuracy of rice detection and counting in the field, we developed and implemented a panicle detection and counting system that is based on improved region-based fully convolutional networks, and we use the system to automate rice-phenotype measurements. The field experiments were conducted in target areas to train and test the system and used a rotor light unmanned aerial vehicle equipped with a high-definition RGB camera to collect images. The trained model achieved a precision of 0.868 on a held-out test set, which demonstrates the feasibility of this approach. The algorithm can deal with the irregular edge of the rice panicle, the significantly different appearance between the different varieties and growing periods, the interference due to color overlapping between panicle and leaves, and the variations in illumination intensity and shading effects in the field. The result is more accurate and efficient recognition of rice-panicles, which facilitates rice breeding. Overall, the approach of training deep learning models on increasingly large and publicly available image datasets presents a clear path toward smartphone-assisted crop disease diagnosis on a global scale.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Public Projects of Zhejiang Province

Beijing Natural Science Foundation

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3