Mass Conservative Time-Series GAN for Synthetic Extreme Flood-Event Generation: Impact on Probabilistic Forecasting Models

Author:

Karimanzira Divas1

Affiliation:

1. System Technique and Image Exploitation IOSB, Fraunhofer Institute for Optronics, Am Vogelherd 90, 98693 Ilmenau, Germany

Abstract

The lack of data on flood events poses challenges in flood management. In this paper, we propose a novel approach to enhance flood-forecasting models by utilizing the capabilities of Generative Adversarial Networks (GANs) to generate synthetic flood events. We modified a time-series GAN by incorporating constraints related to mass conservation, energy balance, and hydraulic principles into the GAN model through appropriate regularization terms in the loss function and by using mass conservative LSTM in the generator and discriminator models. In this way, we can improve the realism and physical consistency of the generated extreme flood-event data. These constraints ensure that the synthetic flood-event data generated by the GAN adhere to fundamental hydrological principles and characteristics, enhancing the accuracy and reliability of flood-forecasting and risk-assessment applications. PCA and t-SNE are applied to provide valuable insights into the structure and distribution of the synthetic flood data, highlighting patterns, clusters, and relationships within the data. We aimed to use the generated synthetic data to supplement the original data and train probabilistic neural runoff model for forecasting multi-step ahead flood events. t-statistic was performed to compare the means of synthetic data generated by TimeGAN with the original data, and the results showed that the means of the two datasets were statistically significant at 95% level. The integration of time-series GAN-generated synthetic flood events with real data improved the robustness and accuracy of the autoencoder model, enabling more reliable predictions of extreme flood events. In the pilot study, the model trained on the augmented dataset with synthetic data from time-series GAN shows higher NSE and KGE scores of NSE = 0.838 and KGE = 0.908, compared to the NSE = 0.829 and KGE = 0.90 of the sixth hour ahead, indicating improved accuracy of 9.8% NSE in multistep-ahead predictions of extreme flood events compared to the model trained on the original data alone. The integration of synthetic training datasets in the probabilistic forecasting improves the model’s ability to achieve a reduced Prediction Interval Normalized Average Width (PINAW) for interval forecasting, yet this enhancement comes with a trade-off in the Prediction Interval Coverage Probability (PICP).

Publisher

MDPI AG

Reference26 articles.

1. Benchmarking machine learning models for the large-scale simulation of flood hazard;Dottori;Environ. Model. Softw.,2018

2. Singh, V.P. (2018). Calibration and Validation of Hydrological Models. Handbook of Applied Hydrology, McGraw-Hill Education.

3. Time series generative adversarial networks;Yoon;Adv. Neural Inf. Process. Syst.,2019

4. Xie, J., Lu, Y., Lin, L., Wang, Y., and Song, M. (2019, January 8–14). SINGAN: Spatio-temporal Interactive Generative Adversarial Networks for Synthetic Weather Radar Data Generation. Proceedings of the 33rd Conference on Neural Information Processing Systems, Vancouver, BC, Canada.

5. Cao, J., Wang, S., and Li, J. (2017, January 18–21). Time Series Generative Adversarial Networks. Proceedings of the 2017 IEEE International Conference on Data Mining, New Orleans, LA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3