Multi-Omics Integrative Analysis to Reveal the Impacts of Shewanella algae on the Development and Lifespan of Marine Nematode Litoditis marina

Author:

Xue Yiming1234,Xue Beining1234ORCID,Zhang Liusuo123ORCID

Affiliation:

1. CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

2. Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China

3. Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Understanding how habitat bacteria affect animal development, reproduction, and aging is essential for deciphering animal biology. Our recent study showed that Shewanella algae impaired Litoditis marina development and lifespan, compared with Escherichia coli OP50 feeding; however, the underlying mechanisms remain unclear. Here, multi-omics approaches, including the transcriptome of both L. marina and bacteria, as well as the comparative bacterial metabolome, were utilized to investigate how bacterial food affects animal fitness and physiology. We found that genes related to iron ion binding and oxidoreductase activity pathways, such as agmo-1, cdo-1, haao-1, and tdo-2, were significantly upregulated in L. marina grown on S. algae, while extracellular structural components-related genes were significantly downregulated. Next, we observed that bacterial genes belonging to amino acid metabolism and ubiquinol-8 biosynthesis were repressed, while virulence genes were significantly elevated in S. algae. Furthermore, metabolomic analysis revealed that several toxic metabolites, such as puromycin, were enriched in S. algae, while many nucleotides were significantly enriched in OP50. Moreover, we found that the “two-component system” was enriched in S. algae, whereas “purine metabolism” and “one-carbon pool by folate” were significantly enriched in E. coli OP50. Collectively, our data provide new insights to decipher how diet modulates animal fitness and biology.

Funder

National Natural Science Foundation of China

Key deployment project of Centre for Ocean Mega–Research of Science, Chinese Academy of Sciences

“Talents from overseas Program, IOCAS” of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3