Integrating Deep Learning into Genotoxicity Biomarker Detection for Avian Erythrocytes: A Case Study in a Hemispheric Seabird

Author:

Frixione Martín G.12ORCID,Roffet Facundo3ORCID,Adami Miguel A.1ORCID,Bertellotti Marcelo14ORCID,D’Amico Verónica L.1ORCID,Delrieux Claudio3ORCID,Pollicelli Débora135ORCID

Affiliation:

1. Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn 9120, Argentina

2. School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA

3. Instituto de Ciencias e Ingeniería de la Computación (ICIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Departamento de Ingeniería Eléctrica y Computadoras, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina

4. Escuela de Producción, Ambiente y Desarrollo Sostenible, Universidad del Chubut, Puerto Madryn 9120, Argentina

5. Laboratorio de Investigación en Informática (LINVI), Departamento de Informática, Facultad de Ingeniería, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia 9005, Argentina

Abstract

Recently, nuclear abnormalities in avian erythrocytes have been used as biomarkers of genotoxicity in several species. Anomalous shapes are usually detected in the nuclei by means of microscopy inspection. However, due to inter- and intra-observer variability, the classification of these blood cell abnormalities could be problematic for replicating research. Deep learning, as a powerful image analysis technique, can be used in this context to improve standardization in identifying the biological configurations of medical and veterinary importance. In this study, we present a standardized deep learning model for identifying and classifying abnormal shapes in erythrocyte nuclei in blood smears of the hemispheric and synanthropic Kelp Gull (Larus dominicanus). We trained three convolutional backbones (ResNet34 and ResNet50 architectures) to obtain models capable of detecting and classifying these abnormalities in blood cells. The analysis was performed at three discrimination levels of classification, with broad categories subdivided into increasingly specific subcategories (level 1: “normal”, “abnormal”, “other”; level 2: “normal”, “ENAs”, “micronucleus”, “other”; level 3: “normal”, “irregular”, “displaced”, “enucleated”, “micronucleus”, “other”). The results were more than adequate and very similar in levels 1 and 2 (F1-score 84.6% and 83.6%, and accuracy 83.9% and 82.6%). In level 3, performance was lower (F1-score 65.9% and accuracy 80.8%). It can be concluded that the level 2 analysis should be considered the most appropriate as it is more specific than level 1, with similar quality of performance. This method has proven to be a fast, efficient, and standardized approach that reduces the dependence on human supervision in the classification of nuclear abnormalities in avian erythrocytes, and can be adapted to be used in similar contexts with reduced effort.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3