Exploring Long Range para-Phenyl Effects in Unsymmetrically Fused bis(imino)pyridine-Cobalt Ethylene Polymerization Catalysts

Author:

Wang Yizhou12ORCID,Wang Zheng13,Zhang Qiuyue1ORCID,Zou Song1,Ma Yanping1ORCID,Solan Gregory A.14ORCID,Zhang Wenjuan15,Sun Wen-Hua12ORCID

Affiliation:

1. Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China

2. CAS Research/Education Center for Excellence in Molecular Sciences and International School, University of Chinese Academy of Sciences, Beijing 100049, China

3. College of Science, Hebei Agricultural University, Baoding 071001, China

4. Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK

5. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China

Abstract

Unsymmetrical 11-phenyl-1,2,3,7,8,9,10-heptahydrocyclohepta[b]quinoline-4,6-dione, incorporating a para-phenyl substituted pyridine unit fused by both 6- and 7-membered carbocyclic rings, has been prepared on the gram-scale via a multi-step procedure involving cyclization, hydrogenation and oxidation. Templating this diketone, in the presence of cobalt(II) chloride hexahydrate, with the corresponding aniline afforded in good yield five examples of doubly fused bis(arylimino)pyridine-cobalt(II) chlorides, Co1 (aryl = 2,6-dimethylphenyl), Co2 (2,6-diethylphenyl), Co3 (2,6-diisopropylphenyl), Co4 (2,4,6-trimethylphenyl) and Co5 (2,6-diethyl-4-methylphenyl). Structural characterization of Co1, Co2 and Co3 highlights the flexible nature of the inequivalent fused rings on the NNN’-ligand and the skewed disposition of the para-phenyl group. On activation with MAO, Co1–Co5 exhibited high activity for ethylene polymerization at 30 °C (up to 5.66 × 106 g (PE) mol−1 (Co) h−1) with the relative order being as follows: Co4 > Co1 > Co5 > Co3 > Co2. All polyethylenes were strictly linear, while their molecular weights and dispersities showed some notable variations. For Co1, Co2, Co4 and Co5, all polymerizations were well controlled as evidenced by the narrow dispersities of their polymers (Mw/Mn range: 1.8–2.7), while their molecular weights (Mw range: 2.9–10.9 kg mol−1) steadily increased in line with the greater steric properties of the N-aryl ortho-substituents. By contrast, the most hindered 2,6-diisopropyl counterpart Co3 displayed a broad distribution with bimodal characteristics (Mw/Mn = 10.3) and gave noticeably higher molecular weight polymer (Mw = 75.5 kg mol−1). By comparison, the MMAO-activated catalysts were generally less active, but showed similar trends in molecular weight and polymer dispersity. End group analysis of selected polymers via 13C and 1H NMR spectroscopy revealed the presence of both saturated and unsaturated polyethylenes in accordance with competing chain transfer pathways. Notably, when comparing Co3/MAO with its non-phenyl substituted analogue (E2,6-iPr2Ph)CoCl2/MAO, the former, though less controlled, displayed higher activity and molecular weight, a finding that points towards a role played by the remote para-phenyl group.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3