Constructing Interconnected Hollow Mesopore Sn-Si Mixed Oxide Microspheres by Aerosol-Assisted Alkali Treatment with Enhanced Catalytic Performance in Baeyer-Villiger Oxidation

Author:

Meng Qingrun1ORCID,Gao Xiaoxu1,Li Dezheng1,Liu Huimin1

Affiliation:

1. Key Laboratory of Energy Chemical and Nano-Catalysis, School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China

Abstract

In this work, Sn-Si mixed oxide microspheres with concave hollow morphologies were first synthesized by a simple aerosol method using the very common commercial surfactant cetyl trimethyl ammonium bromide (CTAB) as a template, and then highly interconnected mesoporous and hollow Sn-Si mixed oxide microspheres were synthesized via an alkali (NaOH) treatment in the presence of CTAB. The results show that CTAB plays a crucial role not only in forming hollow morphologies during the aerosol process, but also protecting the amorphous framework and thus preventing the excessive loss of Sn species during the NaOH treatment. More importantly, it widens mesoporous distribution and forms interconnected mesoporous channels. The catalytic performance of Baeyer–Villiger oxidation on the interconnected mesoporous and hollow Sn-Si mixed oxide microspheres with 2-adamantanone and hydrogen peroxide was 9.4 times higher than that of the sample synthesized without the addition of CTAB; 2.3 times that of the untreated parent, which was due to the excellent diffusion properties derived from the hollow and interconnected mesopore structure. This method is mild, simple, low-cost, and can be continuously produced, which has the prospect of industrial application. Furthermore, the fundamentals of this study provide new insights for the rational design and preparation of highly interlinked mesoporous and hollow metal-oxides with unique catalytic performances.

Funder

Scientific Research Foundation of Liaoning province of China

Natural Science Foundation of Liaoning Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3