Adsorption of Ferritin at Nanofaceted Al2O3 Surfaces

Author:

Pothineni Bhanu K.1ORCID,Kollmann Sabrina1,Li Xinyang1,Grundmeier Guido1ORCID,Erb Denise J.2ORCID,Keller Adrian1ORCID

Affiliation:

1. Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany

2. Ion Beam Center, Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

Abstract

The influence of nanoscale surface topography on protein adsorption is highly important for numerous applications in medicine and technology. Herein, ferritin adsorption at flat and nanofaceted, single-crystalline Al2O3 surfaces is investigated using atomic force microscopy and X-ray photoelectron spectroscopy. The nanofaceted surfaces are generated by the thermal annealing of Al2O3 wafers at temperatures above 1000 °C, which leads to the formation of faceted saw-tooth-like surface topographies with periodicities of about 160 nm and amplitudes of about 15 nm. Ferritin adsorption at these nanofaceted surfaces is notably suppressed compared to the flat surface at a concentration of 10 mg/mL, which is attributed to lower adsorption affinities of the newly formed facets. Consequently, adsorption is restricted mostly to the pattern grooves, where the proteins can maximize their contact area with the surface. However, this effect depends on the protein concentration, with an inverse trend being observed at 30 mg/mL. Furthermore, different ferritin adsorption behavior is observed at topographically similar nanofacet patterns fabricated at different annealing temperatures and attributed to different step and kink densities. These results demonstrate that while protein adsorption at solid surfaces can be notably affected by nanofacet patterns, fine-tuning protein adsorption in this way requires the precise control of facet properties.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3