The Effect of Internal Combustion Engine Nozzle Needle Profile on Fuel Atomization Quality

Author:

Klyus Oleh1,Szczepanek Marcin2ORCID,Kidacki Grzegorz3,Krause Paweł3,Olszowski Sławomir4,Chybowski Leszek5ORCID

Affiliation:

1. Department of Marine Power Plants, Faculty of Marine Engineering, Maritime University of Szczecin, ul. Willowa 2, 71-650 Szczecin, Poland

2. Department of Power Engineering, Faculty of Marine Engineering, Maritime University of Szczecin, ul. Willowa 2, 71-650 Szczecin, Poland

3. Faculty Teaching Centre, Faculty of Marine Engineering, Maritime University of Szczecin, ul. Willowa 2, 71-650 Szczecin, Poland

4. Department of Operation and Transport Organization, Faculty of Transport and Electrical Engineering, Kazimierz Pułaski University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom, Poland

5. Department of Machine Construction and Materials, Faculty of Marine Engineering, Maritime University of Szczecin, ul. Willowa 2, 71-650 Szczecin, Poland

Abstract

This article presents the results of research on the impact of changing the cross-section of an atomizer’s flow channel, which is caused by changing the flow geometry of the passive part of the needle on the drop diameter distribution of the fuel spray. A three-hole type H1LMK, 148/1 atomizer with hole diameters, dN, equal to 0.34 mm, is analyzed. A nozzle with a standard (i.e., unmodified) needle and three nozzles using needles with a modified profile in the flow part of the needle, marked by the code signatures 1L, 2L, and 3L, are tested. An increasing level of fuel turbulence characterizes the needles during the flow along their flow part due to the use of one (1L), two (2L), and three (3L) de Laval toroidal nozzles, respectively, obtained by mechanically shaping the outer surface of the flow part of the spray needle. The spray produced is tested using the Malvern Spraytec STP 500 device cooperating with the dedicated Malvern version 4.0. During the tests, measurements and an analysis of the spray droplet size distribution over the entire injection duration, equal to 7 ± 2 ms, are made for each nozzle. The experiment makes it possible to determine the effect of the nozzle needles’ profiles on the time distribution of the actual droplet diameters; the time distribution of the Sauter mean droplet diameters, D[3,2]; the percentile shares of the droplet diameters Dv (10), Dv (50), and Dv (90); the distribution span during the development of the spray stream; and the time distribution of the shares of the droplets with diameters belonging to selected diameter classes D[x1−x2] in the spray. The results of the measurements of the drop diameter distribution indicate that using atomizers with a modification to the flow channel allows for an increase in the share of droplets with smaller diameters compared to the standard atomizer.

Funder

Reducing energy consumption in terms of reducing the negative impact of inland and sea fishing on the environment

Ministry of Science and Higher Education (MEiN) of Poland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3