Covalent Inhibitors from Saudi Medicinal Plants Target RNA-Dependent RNA Polymerase (RdRp) of SARS-CoV-2

Author:

Bakheit Ahmed H.1,Saquib Quaiser2ORCID,Ahmed Sarfaraz3,Ansari Sabiha M.4,Al-Salem Abdullah M.2,Al-Khedhairy Abdulaziz A.2

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

2. Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

4. Botany & Microbiology Department, College of Sciences, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

Abstract

COVID-19, a disease caused by SARS-CoV-2, has caused a huge loss of human life, and the number of deaths is still continuing. Despite the lack of repurposed drugs and vaccines, the search for potential small molecules to inhibit SARS-CoV-2 is in demand. Hence, we relied on the drug-like characters of ten phytochemicals (compounds 1–10) that were previously isolated and purified by our research team from Saudi medicinal plants. We computationally evaluated the inhibition of RNA-dependent RNA polymerase (RdRp) by compounds 1–10. Non-covalent (reversible) docking of compounds 1–10 with RdRp led to the formation of a hydrogen bond with template primer nucleotides (A and U) and key amino acid residues (ASP623, LYS545, ARG555, ASN691, SER682, and ARG553) in its active pocket. Covalent (irreversible) docking revealed that compounds 7, 8, and 9 exhibited their irreversible nature of binding with CYS813, a crucial amino acid in the palm domain of RdRP. Molecular dynamic (MD) simulation analysis by RMSD, RMSF, and Rg parameters affirmed that RdRP complexes with compounds 7, 8, and 9 were stable and showed less deviation. Our data provide novel information on compounds 7, 8, and 9 that demonstrated their non-nucleoside and irreversible interaction capabilities to inhibit RdRp and shed new scaffolds as antivirals against SARS-CoV-2.

Funder

King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3