Relationship Between Tree Size, Sediment Mud Content, Oxygen Levels, and Pneumatophore Abundance in the Mangrove Tree Species Avicennia Marina (Forssk.) Vierh

Author:

Al-Khayat Jassim A.,Alatalo Juha M.ORCID

Abstract

Mangroves are important in protecting and stabilizing coastal zones. Pneumatophores of the mangrove species Avicennia marina can form a large aboveground complex of aerial roots, which are important in supporting mangrove growth in low-oxygen environments. We examined the relationship between mangrove tree height, tree girth, sediment mud content, and oxygen levels with pneumatophore abundance. As sediments with higher mud content have more anaerobic conditions due to their lower porosity, we hypothesized that pneumatophore abundance would be positively correlated with sediment mud content and negatively correlated with sediment oxygen levels. Pneumatophore abundance of A. marina ranged from 14 to 516 per m2 (mean 171.8 ± 0.61 per m2), pneumatophore height from 6.6 to 27.5 cm (14.1 ± 0.86 cm), and maximum pneumatophore diameter from 8.5–12.7 mm (8.5 ± 0.24 mm). Pneumatophore abundance was positively correlated with tree height and tree girth. As hypothesized, pneumatophore abundance was positively correlated with percentage of mud content in sediment and negatively correlated with oxygen percentage. This suggests that mangrove trees can adapt to anaerobic and water-logged conditions by increasing their number of pneumatophores, hence providing greater surface area for gas exchange. In addition, there was a significant effect of mangrove (natural and planted), tidal position, and their interaction. With natural mangrove having higher abundance of pneumatophores compared to the planted mangrove, with the highest number closest to the sea. While pneumatophore abundance did not differ among tidal zones in planted mangrove.

Funder

Qatar Petroleum

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3