In Vivo Assessment of the Apatite-Forming Ability of New-Generation Hydraulic Calcium Silicate Cements Using a Rat Subcutaneous Implantation Model

Author:

Edanami Naoki1,Takenaka Shoji1,Ibn Belal Razi Saifullah1,Yoshiba Kunihiko2,Takahara Shintaro1,Yoshiba Nagako1,Ohkura Naoto1,Noiri Yuichiro1

Affiliation:

1. Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan

2. Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan

Abstract

Hydroxyapatite formation on endodontic hydraulic calcium silicate cements (HCSCs) plays a significant role in sealing the root canal system and elevating the hard-tissue inductivity of the materials. This study evaluated the in vivo apatite-forming ability of 13 new-generation HCSCs using an original HCSC (white ProRoot MTA: PR) as a positive control. The HCSCs were loaded into polytetrafluoroethylene tubes and implanted in the subcutaneous tissue of 4-week-old male Wistar rats. At 28 days after implantation, hydroxyapatite formation on the HCSC implants was assessed with micro-Raman spectroscopy, surface ultrastructural and elemental characterization, and elemental mapping of the material–tissue interface. Seven new-generation HCSCs and PR had a Raman band for hydroxyapatite (v1 PO43− band at 960 cm−1) and hydroxyapatite-like calcium-phosphorus-rich spherical precipitates on the surfaces. The other six HCSCs with neither the hydroxyapatite Raman band nor hydroxyapatite-like spherical precipitates did not show calcium-phosphorus-rich hydroxyapatite-layer-like regions in the elemental mapping. These results indicated that 6 of the 13 new-generation HCSCs possessed little or no ability to produce hydroxyapatite in vivo, unlike PR. The weak in vivo apatite-forming ability of the six HCSCs may have a negative impact on their clinical performance.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3