Effect of Incremental Utilization of Unground Sea Sand Ore on the Consolidation and Reduction Behavior of Vanadia–Titania Magnetite Pellets

Author:

Xing Zhenxing,Cheng Gongjin,Gao Zixian,Yang He,Xue Xiangxin

Abstract

In the iron and steel industry, improving the usage amount of New Zealand sea sand ore as a raw material for ironmaking can reduce the production costs of iron and steel enterprises to a certain extent. In this paper, New Zealand sea sand ore without any grinding pretreatment was used as a raw material, oxidized pellets were prepared by using a disc pelletizer, and the effect of sea sand ore on the performance of green pellets and the metallurgical properties of oxidized pellets was investigated. The effects of sea sand ore on the compressive strength, falling strength, compressive strength of oxidized pellets, and reduction performance were mainly investigated. X-Ray Diffraction (XRD) patterns and Scanning Electron Microscope (SEM) analysis methods were used to discuss the influence of sea sand ore on the microstructure of the pellets’ oxidation and reduction process. As the amount of sea sand ore used increased, the compressive strength of green pellets was gradually decreased, and the falling strength of green pellets and the compressive strength of oxidized pellets were gradually increased. When the amount of sea sand ore used was 40%, the reduction swelling index of pellets was 16.31%. The increase of sea sand ore used made the reduction of pellets suppressed and the reduction rate decreased. When the amount of sea sand ore used increased to 40%, the reduction degree of sea sand ore pellets was only 60.06%. The experimental results in this paper provide specific experimental data for the large-scale application of New Zealand sea sand ore in the blast furnace ironmaking process.

Funder

the National Natural Science Foundation of Chin

the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3