Early Detection of Cervical Cancer by Fluorescence Lifetime Imaging Microscopy Combined with Unsupervised Machine Learning

Author:

Ji Mingmei,Zhong Jiahui,Xue Runzhe,Su Wenhua,Kong Yawei,Fei YiyanORCID,Ma JiongORCID,Wang Yulan,Mi LanORCID

Abstract

Cervical cancer has high morbidity and mortality rates, affecting hundreds of thousands of women worldwide and requiring more accurate screening for early intervention and follow-up treatment. Cytology is the current dominant clinical screening approach, and though it has been used for decades, it has unsatisfactory sensitivity and specificity. In this work, fluorescence lifetime imaging microscopy (FLIM) was used for the imaging of exfoliated cervical cells in which an endogenous coenzyme involved in metabolism, namely, reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H], was detected to evaluate the metabolic status of cells. FLIM images from 71 participants were analyzed by the unsupervised machine learning method to build a prediction model for cervical cancer risk. The FLIM method combined with unsupervised machine learning (FLIM-ML) had a sensitivity and specificity of 90.9% and 100%, respectively, significantly higher than those of the cytology approach. One cancer recurrence case was predicted as high-risk several months earlier using this method as compared to using current clinical methods, implying that FLIM-ML may be very helpful for follow-up cancer care. This study illustrates the clinical applicability of FLIM-ML as a detection method for cervical cancer screening and a convenient tool for follow-up cancer care.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Medical Engineering Fund of Fudan University

Shanghai Natural Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3