Protective Effect of Rutin on Triethylene Glycol Dimethacrylate-Induced Toxicity through the Inhibition of Caspase Activation and Reactive Oxygen Species Generation in Macrophages

Author:

Yang Li-Chiu,Chang Yu-ChaoORCID,Yeh Kun-Lin,Huang Fu-Mei,Su Ni-Yu,Kuan Yu-HsiangORCID

Abstract

Rutin, also called quercetin-3-rhamnosyl glucoside, is a natural flavonol glycoside present in many plants. Rutin is used to treat various diseases, such as inflammation, diabetes, and cancer. For polymeric biomaterials, triethylene glycol dimethacrylate (TEGDMA) is the most commonly used monomer and serves as a restorative resin, a dentin bonding agent and sealant, and a bone cement component. Overall, TEGDMA induces various toxic effects in macrophages, including cytotoxicity, apoptosis, and genotoxicity. The aim of this study was to investigate the protective mechanism of rutin in alleviating TEGDMA-induced toxicity in RAW264.7 macrophages. After treatment with rutin, we assessed the cell viability and apoptosis of TEGDMA-induced RAW264.7 macrophages using an methylthiazol tetrazolium (MTT) assay and Annexin V-FITC/propidium iodide assay, respectively. Subsequently, we assessed the level of genotoxicity using comet and micronucleus assays, assessed the cysteinyla aspartate specific proteinases (caspases) and antioxidant enzyme (AOE) activity using commercial kits, and evaluated the generation of reactive oxygen species (ROS) using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay. We evaluated the expression of heme oxygenase (HO)-1, the expression of nuclear factor erythroid 2 related factor (Nrf-2), and phosphorylation of AMP activated protein kinase (AMPK) using the Western blot assay. The results indicated that rutin substantially reduced the level of cytotoxicity, apoptosis, and genotoxicity of TEGDMA-induced RAW264.7 macrophages. Rutin also blocked the activity of caspase-3, caspase-8, and caspase-9 in TEGDMA-stimulated RAW264.7 macrophages. In addition, it decreased TEGDMA-induced ROS generation and AOE deactivation in macrophages. Finally, we found that TEGDMA-inhibited slightly the HO-1 expression, Nrf-2 expression, and AMPK phosphorylation would be revered by rutin. In addition, the HO-1 expression, Nrf-2 expression, and AMPK phosphorylation was enhanced by rutin. These findings indicate that rutin suppresses TEGDMA-induced caspase-mediated toxic effects through ROS generation and antioxidative system deactivation through the Nrf-2/AMPK pathway. Therefore, rutin has the potential to serve as a novel antitoxicity agent for TEGDMA in RAW264.7 macrophages.

Funder

Ministry of Science and Technology of Taiwan

Chung Shan Medical University Hospital research program of Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3