Three-Body Abrasive Wear-Resistance Characteristics of a 27Cr-Based 3V-3Mo-3W-3Co Multicomponent White Cast Iron with Different Ti Additions

Author:

Purba Riki HendraORCID,Shimizu Kazumichi,Kusumoto Kenta

Abstract

A multicomponent white cast iron containing 5 wt.% each of Cr, V, Mo, W, and Co (MWCI) is known to have excellent wear-resistance properties due to the precipitation of some very hard carbides, such as MC, M2C, and M7C3. However, it seems possible to improve the wear resistance of MWCI by increasing the carbide volume fraction (CVF). Thus, 27 wt.% Cr based on 3 wt.% each of V, W, Mo, and Co was simultaneously added into the white cast iron. To avoid the tendency of carbides to crack due to high M7C3 precipitation levels, titanium (0–2 wt.% Ti) was also added. A rubber wheel abrasive machine test according to the ASTM G65 standard with two different abrasive particle sizes (average: 75 and 300 μm) was used to evaluate the wear characteristics of the alloy. The results show that the wear resistance of these new alloys (0Ti, 1Ti, and 2Ti) is lower than that of MWCI in small silica sand, owing to the lower hardness. However, a different condition is present in large silica sand, for which the abrasive wear resistance of MWCI is lower than that of the 0Ti and 1Ti specimens. In addition, TiC precipitation effectively refined the size of M7C3 carbides and reduced their cracking tendency. Thus, the wear resistance of 1Ti is comparable to that of 0Ti, although it has a lower hardness factor. However, the wear resistance of the alloy significantly decreased following the addition of Ti by more than 1 wt.% due to the lower hardness and CVF. Therefore, it can be said that the abrasive wear characteristics of the alloy are not only affected by the hardness, but also by the micro-structural constituents (type, size, and volume fraction of carbides) and silica sand size.

Funder

Japan Society for the Promotion of Science KAKENHI

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3