The Inflammatory Profile Orchestrated by Inducible Nitric Oxide Synthase in Systemic Lupus Erythematosus

Author:

Ene Corina Daniela12,Nicolae Ilinca3

Affiliation:

1. Internal Medicine and Nephrology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania

2. Nephrology Department, Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania

3. Dermatology Department, Victor Babes Clinical Hospital of Tropical and Infectious Diseases, 030303 Bucharest, Romania

Abstract

(1) Background: The pathogenesis of systemic lupus erythematosus (SLE) involves complicated and multifactorial interactions. Inducible nitric oxide synthase overactivation (iNOS or NOS2) could be involved in SLE pathogenesis and progression. This study explored the relationship between NOS2-associated inflammation profiles and SLE phenotypes. (2) Methods: We developed a prospective, case control study that included a group of 86 SLE subjects, a group of 73 subjects with lupus nephritis, and a control group of 60 people. Laboratory determinations included serum C reactive protein (CRP–mg/L), enzymatic activity of NOS2 (U/L), serum levels of inducible factors of hypoxia 1 and 2 (HIF1a–ng/mL, HIF2a–ng/mL), vascular endothelial growth factor VEGF (pg/mL), matrix metalloproteinases 2 and 9 (MMP-2, MMP-9–ng/mL), thrombospondin 1 (TSP-1–ng/mL), and soluble receptor of VEGF (sVEGFR–ng/mL). (3) Results: CRP, NOS2, HIF-1a, HIF-2a, VEGF, MMP-2, and MMP-9 were significantly increased, while TSP-1 and sVEGFR were decreased in the SLE and lupus nephritis groups compared with the control group. The variations in these biomarkers were strongly associated with the decrease in eGFR and increase in albuminuria. (4) Conclusions: The inflammatory phenotype of SLE patients, with or without LN, is defined by NOS2 and hypoxia over-expression, angiogenesis stimulation, and inactivation of factors that induce resolution of inflammation in relation with eGFR decline.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3