The Impact of Input Types on Smart Contract Vulnerability Detection Performance Based on Deep Learning: A Preliminary Study

Author:

Aldyaflah Izdehar M.1,Zhao Wenbing1ORCID,Yang Shunkun2,Luo Xiong3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, OH 44115, USA

2. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

3. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Stemming vulnerabilities out of a smart contract prior to its deployment is essential to ensure the security of decentralized applications. As such, numerous tools and machine-learning-based methods have been proposed to help detect vulnerabilities in smart contracts. Furthermore, various ways of encoding the smart contracts for analysis have also been proposed. However, the impact of these input methods has not been systematically studied, which is the primary goal of this paper. In this preliminary study, we experimented with four common types of input, including Word2Vec, FastText, Bag-of-Words (BoW), and Term Frequency–Inverse Document Frequency (TF-IDF). To focus on the comparison of these input types, we used the same deep-learning model, i.e., convolutional neural networks, in all experiments. Using a public dataset, we compared the vulnerability detection performance of the four input types both in the binary classification scenarios and the multiclass classification scenario. Our findings show that TF-IDF is the best overall input type among the four. TF-IDF has excellent detection performance in all scenarios: (1) it has the best F1 score and accuracy in binary classifications for all vulnerability types except for the delegate vulnerability where TF-IDF comes in a close second, and (2) it comes in a very close second behind BoW (within 0.8%) in the multiclass classification.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3