ZIC-cHILIC Functionalized Magnetic Nanoparticle for Rapid and Sensitive Glycopeptide Enrichment from <1 µL Serum

Author:

Pradita TiaraORCID,Chen Yi-JuORCID,Mernie Elias,Bendulo SharineORCID,Chen Yu-JuORCID

Abstract

Due to their unique glycan composition and linkage, protein glycosylation plays significant roles in cellular function and is associated with various diseases. For comprehensive characterization of their extreme structural complexity occurring in >50% of human proteins, time-consuming multi-step enrichment of glycopeptides is required. Here we report zwitterionic n-dodecylphosphocholine-functionalized magnetic nanoparticles (ZIC-cHILIC@MNPs) as a highly efficient affinity nanoprobe for large-scale enrichment of glycopeptides. We demonstrate that ZIC-cHILIC@MNPs possess excellent affinity, with 80–91% specificity for glycopeptide enrichment, especially for sialylated glycopeptide (90%) from biofluid specimens. This strategy provides rapidity (~10 min) and high sensitivity (<1 μL serum) for the whole enrichment process in patient serum, likely due to the rapid separation using magnetic nanoparticles, fast reaction, and high performance of the affinity nanoprobe at nanoscale. Using this strategy, we achieved personalized profiles of patients with hepatitis B virus (HBV, n = 3) and hepatocellular carcinoma (HCC, n = 3) at the depth of >3000 glycopeptides, especially for the large-scale identification of under-explored sialylated glycopeptides. The glycoproteomics atlas also revealed the differential pattern of sialylated glycopeptides between HBV and HCC groups. The ZIC-cHILIC@MNPs could be a generic tool for advancing the glycoproteome analysis, and contribute to the screening of glycoprotein biomarkers.

Funder

Academia Sinica Taiwan Biosignature project and Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3