Synthesis and Functionalisation of Superparamagnetic Nano-Rods towards the Treatment of Glioblastoma Brain Tumours

Author:

Habra KinanaORCID,McArdle Stéphanie E. B.ORCID,Morris Robert H.,Cave Gareth W. V.ORCID

Abstract

The complete removal of glioblastoma brain tumours is impossible to achieve by surgery alone due to the complex finger-like tentacle structure of the tumour cells and their migration away from the bulk of the tumour at the time of surgery; furthermore, despite aggressive chemotherapy and radiotherapy treatments following surgery, tumour cells continue to grow, leading to the death of patients within 15 months after diagnosis. The naturally occurring carnosine dipeptide has previously demonstrated activity against in vitro cultured glioblastoma cells; however, at natural physiological concentrations, its activity is too low to have a significant effect. Towards realising the full oncological potential of carnosine, the dipeptide was embedded within an externally triggered carrier, comprising a novel nano rod-shaped superparamagnetic iron oxide nanoparticle (ca. 86 × 19 × 11 nm) capped with a branched polyethyleneimine, which released the therapeutic agent in the presence of an external magnetic field. The new nano-carrier was characterized using electron microscopy, dynamic light scattering, elemental analysis, and magnetic resonance imaging techniques. In addition to cytotoxicity studies, the carnosine carrier’s effectiveness as a treatment for glioblastoma was screened in vitro using the U87 human glioblastoma astrocytoma cell line. The labile carnosine (100 mM) suppresses both the U87 cells’ proliferation and mobility over 48 h, resulting in significant reduction in migration and potential metastasis. Carnosine was found to be fully released from the carrier using only mild hyperthermia conditions (40 °C), facilitating an achievable clinical application of the slow, sustained-release treatment of glioblastoma brain tumours that demonstrates potential to inhibit post-surgery metastasis with the added benefit of non-invasive monitoring via MRI.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3