Semi-Supervised Learned Autoencoder for Classification of Events in Distributed Fibre Acoustic Sensors

Author:

Kozmin Artem1ORCID,Kalashev Oleg2ORCID,Chernenko Alexey2,Redyuk Alexey1ORCID

Affiliation:

1. The Artificial Intelligence Research Center, Novosibirsk State University, Pirogova 1, Novosibirsk 630090, Russia

2. T8 LLC, Krasnobogatyrskaya 44/1, Moscow 107076, Russia

Abstract

The global market for infrastructure security systems based on distributed acoustic sensors is rapidly expanding, driven by the need for timely detection and prevention of potential threats. However, deploying these systems is challenging due to the high costs associated with dataset creation. Additionally, advanced signal processing algorithms are necessary for accurately determining the location and nature of detected events. In this paper, we present an enhanced approach based on semi-supervised learning for developing event classification models tailored for real-time and continuous perimeter monitoring of infrastructure facilities. The proposed method leverages a hybrid architecture combining an autoencoder and a classifier to enhance the accuracy and efficiency of event classification. The autoencoder extracts essential features from raw data using unlabeled data, improving the model’s ability to learn meaningful representations. The classifier, trained on labeled data, recognizes and classifies specific events based on these features. The integrated loss function incorporates elements from both the autoencoder and the classifier, guiding the autoencoder to extract features relevant for accurate event classification. Validation using real-world datasets demonstrates that the proposed method achieves recognition performance comparable to the baseline model, while requiring less labeled data and employing a simpler architecture. These results offer practical insights for reducing deployment costs, enhancing system performance, and increasing throughput for new deployments.

Funder

Ministry of Economic Development of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3