Long-Term Survival of Cellulose Sulphate-Encapsulated Cells and Metronomic Ifosfamide Control Tumour Growth in Pancreatic Cancer Models—A Prelude to Treating Solid Tumours Effectively in Pets and Humans

Author:

Salmons Brian1ORCID,Gunzburg Walter H.2ORCID

Affiliation:

1. Austrianova Singapore Pte Ltd., 2 International Business Park, The Strategy @ IBP #09-04, Singapore 609930, Singapore

2. Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria

Abstract

Background: The use of encapsulated cells for the in vivo delivery of biotherapeutics is a promising new technology to potentiate the effectiveness of cell-based therapies for veterinary and human application. One use of the technology is to locally activate chemotherapeutics to their short-lived highly active forms. We have previously shown that a stable clone of HEK293 cells overexpressing a cytochrome P450 enzyme that has been encapsulated in immunoprotective cellulose sulphate beads can be implanted near solid tumours in order to activate oxazaphosphorines such as ifosfamide and cyclophosphamide to the tumour-killing metabolite phosphoramide mustard. The efficacy of this approach has been shown in animal models as well as in human and canine clinical trials. In these previous studies, the oxazaphosphorine was only given twice. An analysis of the Kaplan–Meier plots of the results of the clinical trials suggest that repeated dosing might result in a significant clinical benefit. Aims: In this study, we aimed to (i) demonstrate the stable long-term expression of cytochrome P450 from a characterized, transfected cell clone, as well as (ii) demonstrate that one implanted dose of these encapsulated cytochrome P450-expressing cells is capable of activating multiple doses of ifosfamide in animal models. Methodology: We initially used cell and molecular methods to show cell line stability over multiple passages, as well as chemical and biological function in vitro. This was followed by a demonstration that encapsulated HEK293 cells are capable of activating multiple doses of ifosfamide in a mouse model of pancreatic cancer without being killed by the chemotherapeutic. Conclusion: A single injection of encapsulated HEK293 cells followed by multiple rounds of ifosfamide administration results in repeated anti-tumour activity and halts tumour growth but, in the absence of a functioning immune system, does not cause tumour regression.

Funder

Austrianova Biotechnology GmbH

University of Veterinary Medicine Vienna

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3