Transspinal Direct Current Electrical Stimulation Selectively Affects the Excitability of the Corticospinal System, Depending on the Intensity but Not Motor Skills

Author:

Popyvanova Alena1,Pomelova Ekaterina1ORCID,Bredikhin Dmitry1,Koriakina Maria1,Shestakova Anna1,Blagovechtchenski Evgeny1ORCID

Affiliation:

1. Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, 101000 Moscow, Russia

Abstract

Transspinal direct current stimulation (tsDCS) is a non-invasive technique used to modulate spinal cord activity. However, the effects and mechanisms of this stimulation are currently not comprehensively known. This study aimed to estimate the effect of different intensities of tsDCS applied at the level of cervical enlargement of the spinal cord (C7-Th1 segments) on the excitability of the corticospinal system (CSS) and the correction of motor skills in healthy subjects. The effect of tsDCS was estimated by the motor-evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) in the primary motor cortex (M1). The study involved 54 healthy adults aged 22 ± 4 years. The application of 11 min anodal tsDCS at the level of the cervical spine C7-Th1 with a current intensity of 2.5 mA did not change the MEP amplitude of the upper limb muscles, in contrast to the data that we previously obtained with a current intensity of 1.5 mA. We also found no difference in the effect of 2.5 mA stimulation on motor skill correction in healthy subjects in the nine-hole peg test (9-HPT) and the serial reaction time task (SRT) as with 1.5 mA stimulation. Our data show that an increase in the intensity of stimulation does not lead to an increase in the effects but rather reduces the effects of stimulation. These results provide information about the optimally appropriate stimulation current intensities to induce CSS excitability and the ability of tsDCS to influence motor skills in healthy adults.

Funder

National Research University Higher School of Economics

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3