eDNA Reveals the Associated Metazoan Diversity of Mediterranean Seagrass Sediments

Author:

Wesselmann MarleneORCID,Geraldi Nathan R.ORCID,Marbà NúriaORCID,Hendriks Iris E.ORCID,Díaz-Rúa RubénORCID,Duarte Carlos M.

Abstract

Anthropogenic impacts on marine ecosystems have led to a decline of biodiversity across the oceans, threatening invaluable ecosystem services on which we depend. Ecological temporal data to track changes in diversity are relatively rare, and the few long-term datasets that exist often only date back a few decades or less. Here, we use eDNA taken from dated sediment cores to investigate changes over approximately the last 100 years of metazoan communities in native (Cymodocea nodosa and Posidonia oceanica) and exotic (Halophila stipulacea) seagrass meadows within the eastern Mediterranean Sea, at two locations in Greece and two in Cyprus. Overall, metazoan communities showed a high turnover of taxa during the past century, where losses of individual taxa in a seagrass meadow were compensated by the arrival of new taxa, probably due to the arrival of exotic species introduced in the Mediterranean Sea from the Suez Canal or the Gibraltar Strait. Specifically, bony fishes (Class Actinopteri) and soft corals (Class Anthozoa) presented significantly higher richness in the past (before the 1980s) than in the most recent time periods (from 1980–2017) and some Cnidarian orders were solely found in the past, whereas sponges and Calanoids (Class Hexanauplia), an order of copepods, showed an increase in richness since the 1980s. Moreover, the Phyla Porifera, Nematoda and the Classes Staurozoa, Hydrozoa and Ophiuroidea were detected in P. oceanica meadows but not in C. nodosa and H. stipulacea, which led to P. oceanica meadows having twice the richness of other seagrasses. The greater richness resulted from the more complex habitat provided by P. oceanica. The combination of eDNA and sediment cores allowed us to reconstruct temporal patterns of metazoan community diversity and provides a novel approach to follow natural communities back in time in the absence of time series and baseline data. The ongoing loss of P. oceanica meadows, likely to be compounded with future warming, might lead to a major loss of biodiversity and the replacement by other seagrass species, whether native or exotic, does not compensate for the loss.

Funder

Spanish Ministry of Economy and Competiveness

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3