Exploring the Influence of Natural and Agricultural Land Use Systems on the Different Lability Organic Carbon Compounds in Eutric Endocalcaric Arenosol

Author:

Tripolskaja Liudmila1ORCID,Amaleviciute-Volunge Kristina2ORCID,Kazlauskaite-Jadzevice Asta1ORCID,Slepetiene Alvyra2ORCID,Baksiene Eugenija1ORCID

Affiliation:

1. Voke Branch, Lithuanian Research Centre for Agriculture and Forestry, Zalioji 2, LT-02232 Vilnius, Lithuania

2. Chemical Research Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania

Abstract

It is important to ensure the ratio of stable and labile soil organic carbon (SOC) compounds in the soil as this influences ecosystem functions and the sustainability of soil management. The aim of this investigation was to determine the changes in SOC compounds and soil quality improvement in Arenosol soil after the conversion of arable land to natural and agricultural land use. The land use types included pine afforestation (PA), uncultivated abandoned land (UAL), unfertilised and fertilised cropland (CLunf, CLf), and unfertilised and fertilised grassland (GRunf, GRf). To assess the lability of organic carbon (OC) compounds, levels of mobile humic substances (MHSs), mobile humic acids (MHAs), mobile fulvic acids (MFAs), active C pool (POXC), and water-soluble C (WEOC) compounds were determined. It was found that faster OC accumulation occurs in PA soil than in CLf, and is somewhat slower in grassland uses (GRf and UAL). As the amount of SOC increased, more MHS formed. A significant increase in their quantity was found in PA (+92.2%) and CRf and UAL (+51.5–52.7%). The application of mineral fertilisers promoted the formation of MHSs in CLf and GRf. PA, GRunf, and GRf soils had more suitable conditions for MHA formation (MHA/MFA > 1.3), whereas CLunf soil contained more MFAs. The POXC pool was insensitive to land-use changes in the Arenosol. After land-use conversion, POXC amounts were significantly (p < 0.05) higher in natural ecosystems (UAL and PA) and fertiliser perennial grasses than in CL. The amount of WEOC increased the most in UAL, PA, and GRf (7.4–71.1%). The sequence of decrease in land use was GRf, UAL, and PA > CLunf, CLf, and GRunf. The decreasing order of the carbon management index (CMI) of different land uses (PA > UAL > GRf > GRunf > Clunf) confirms that faster OC accumulation in Arenosol soil occurred in PA and grassland land uses (GRf and UAL). The values of the carbon lability index (CLI) variation (CLunf > GRunf GRf > UAL > PA) show that in PA, UAL, and GRf land uses, mobile organic matter (OM) forms are relatively less formed, which stabilises OC accumulation in the soil. The CMI showed that UAL and GRf were the most suitable soil uses for Arenosol soils.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3