Abstract
Prostate brachytherapy is a treatment for prostate cancer; during the planning of the procedure, ultrasound images of the prostate are taken. The prostate must be segmented out in each of the ultrasound images, and to assist with the procedure, an autonomous prostate segmentation algorithm is proposed. The prostate contouring system presented here is based on a novel superpixel algorithm, whereby pixels in the ultrasound image are grouped into superpixel regions that are optimized based on statistical similarity measures, so that the various structures within the ultrasound image can be differentiated. An active shape prostate contour model is developed and then used to delineate the prostate within the image based on the superpixel regions. Before segmentation, this contour model was fit to a series of point-based clinician-segmented prostate contours exported from conventional prostate brachytherapy planning software to develop a statistical model of the shape of the prostate. The algorithm was evaluated on nine sets of in vivo prostate ultrasound images and compared with manually segmented contours from a clinician, where the algorithm had an average volume difference of 4.49 mL or 10.89%.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. US Scanning Technologies and AI;Scanning Technologies for Autonomous Systems;2024