Chemoinformatics Analysis of the Colour Fastness Properties of Acid and Direct Dyes in Textile Coloration

Author:

Ran Jianhua,Pryazhnikova Victoria G.,Telegin Felix Y.ORCID

Abstract

The efficiency of chemoinformatics methods based on a fragment approach for the analysis of relationships between the chemical structure of textile dyes and colour fastness of the dyeings have been shown by examining a large set of properties, including the light fastness of acid dyes on wool and polyamide fibres, the sensitivity of acid dyes on wool to oxygen bleaching, the wash fastness of acid dyes on wool, the adsorption of direct dyes on cotton, and the photodegradation of azo dyes in solution. An analysis of the developed regression models depicted the contribution of ten substructural molecular fragments for each indicator of the colour fastness properties of acid and direct azo dyes on textile materials. The similarity of several individual multi-atomic fragments for acid and direct azo dyes was found for wool, polyamide, and cotton fibres, which indicates the coinciding mechanisms of the physicochemical processes that accompany the destruction of dyes while testing the light fastness and sensitivity of the dyeings to oxygen bleaching, as well as their adsorption/desorption with the wash fastness and dyeability of wool and cotton.

Funder

Ministry of Science and Higher Education of Russia

Publisher

MDPI AG

Reference87 articles.

1. Physico-Chemical Aspects of Textile Coloration;Burkinshaw,2016

2. The role of inorganic electrolyte (salt) in cellulosic fibre dyeing: Part 1 fundamental aspects

3. The role of inorganic electrolyte (salt) in cellulosic fibre dyeing: Part 2 theories of how inorganic electrolyte promotes dye uptake

4. The Physical Chemistry of Dyeing;Vickerstaff,1954

5. Textile Chemistry: The Physical Chemistry of Dyeing;Peters,1975

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3