Melanin-Binding Colorants: Updating Molecular Modeling, Staining and Labeling Mechanisms, and Biomedical Perspectives

Author:

Stockert Juan C.ORCID,Espada JesúsORCID,Blázquez-Castro AlfonsoORCID

Abstract

Melanin and melanoma tumors are two fields of increasing interest in biomedical research. Melanins are ubiquitous biopigments with adaptive value and multiple functions, and occur in the malignant melanoma. Although several chemical structures have been proposed for eumelanin, molecular modeling and orbitals indicate that a planar or spiral benzoquinone-porphycene polymer would be the model that better explains the broad-band light and ultrasound absorption, electric conductivity, and graphite-like organization shown by X-ray crystallography and electron microscopy. Lysosomes and melanosomes are selectively labeled by vital probes, and melanin also binds to metal cations, colorants, and drugs, with important consequences in pharmacology, pathology, and melanoma therapy. In addition to traditional and recent oncologic treatments, photodynamic, photothermal, and ultrasound protocols represent novel modalities for melanoma therapy. Since eumelanin is practically the ideal photothermal and ultrasound sensitizer, the vibrational decay from photo-excited electrons after NIR irradiation, or the electrochemical production of ROS and radicals after ultrasound absorption, induce an efficient heating or oxidative response, resulting in the damage and death of tumor cells. This allows repetitive treatments due to the remaining melanin contained in tumoral melanophages. Given that evolution and prognosis of the advanced melanoma is still a concern, new biophysical procedures based on melanin properties can now be developed and applied.

Publisher

MDPI AG

Reference205 articles.

1. Colorants: General survey

2. Colorants: A New Journal Bringing Colour to Life

3. The use of dyes in modern biomedicine

4. The Sigma-Aldrich Handbook of Stains, Dyes and Indicators;Green,1990

5. Conn’s Biological Stains. A handbook of Dyes, Stains and Fluorochromes for Use in Biology and Medicine;Horobin,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3