Ti3AlC2 MAX Phase Modified Screen-Printed Electrode for the Fabrication of Hydrazine Sensor

Author:

Ahmad Khursheed1ORCID,Raza Waseem2,Khan Rais Ahmad3ORCID

Affiliation:

1. School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

2. Department of Materials Science and Engineering, WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany

3. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Hydrazine is considered a powerful reducing agent and catalyst, showing diverse applications in agricultural industries, toxic degradation research, and wastewater management. Additionally, hydrazine can trigger some specific reactions when combined with suitable oxidants. Due to its highly polar nature, hydrazine can easily dissolve in alcohol, water, and various other polar solvents. Therefore, it can be extensively utilized in different areas of application and industries such as rocketry and various chemical applications. Despite its beneficial properties, hydrazine is unstable, posing significant risk due to its highly toxic nature. It is extremely hazardous to both human health and the environment. It can cause various illnesses and symptoms such as dizziness, temporary blindness, damage to the central nervous system, and even death when inhaled in sufficient quantities. Therefore, it is highly important to monitor the level of hydrazine to prevent its toxic and hazardous effects on human beings and the environment. In the present study, we discuss the simple fabrication of a disposable cost-effective and eco-friendly hydrazine sensor. We used a screen-printed carbon electrode, i.e., SPCE, as a base for the construction of a hydrazine sensor. The Ti3AlC2 MAX has been used as a suitable and efficient electrode material for the fabrication of disposable hydrazine sensors. We modified the active surface of the SPCE using a drop-casting approach. The resulting Ti3AlC2 MAX modified SPCE (Ti3AlC2@SPCE) has been utilized as an efficient and low-cost hydrazine sensor. Cyclic voltammetry, i.e., CV, and linear sweep voltammetry, viz., LSV, was employed as a sensing technique in this study. The optimization of pH and electrode material loading was conducted. The Ti3AlC2@SPCE exhibited excellent sensing performance toward hydrazine oxidation. A reasonable detection limit (0.01 µM) was achieved for hydrazine sensing. The fabricated sensor also demonstrated a reasonable linear range of 1–50 µM. This work provides the design and fabrication of simple disposable Ti3AlC2@SPCE as a suitable electrode for the determination of hydrazine using LSV technology.

Funder

Deputyship for Research and Innovation, ‘Ministry of Education’ in Saudi Arabia

Publisher

MDPI AG

Reference60 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3