Effect of Synthesis Conditions on CuO-NiO Nanocomposites Synthesized via Saponin-Green/Microwave Assisted-Hydrothermal Method

Author:

Al-Yunus Amnah1,Al-Arjan Wafa1,Traboulsi Hassan12,Schuarca Robson3,Chando Paul3ORCID,Hosein Ian D.3,Hessien Manal1ORCID

Affiliation:

1. Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Alahsa 31982, Saudi Arabia

2. Department of Chemistry, Champlain College, 900 Riverside Drive, St-Lambert, QC J4P 3P2, Canada

3. Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, 339 Link Hall, Syracuse, NY 13244, USA

Abstract

This work presents the synthesis of CuO-NiO nanocomposites under different synthesis conditions. Nanocomposites were synthesized by merging a green synthesis process with a microwave-assisted hydrothermal method. The synthesis conditions were as follows: concentration of the metal precursors (0.05, 0.1, and 0.2 M), pH (9, 10, and 11), synthesis temperature (150 °C, 200 °C, and 250 °C), microwave treatment time (15, 30, and 45 min), and extract concentration (20 and 40 mL of 1 g saponin/10 mL water, and 30 mL of 2 g saponin/10 mL water). The phases and crystallite sizes of the calcined nanocomposites were characterized using XRD and band gap via UV-Vis spectroscopy, and their morphologies were investigated using SEM and TEM. The XRD results confirmed the formation of a face-centered cubic phase for nickel oxide, while copper oxide has a monoclinic phase. The calculated crystallite size was in the range of 29–39 nm. The direct band gaps of the samples prepared in this work were in the range of 2.39–3.17 eV.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3