Effects of Climatic Change on Soil Hydraulic Properties during the Last Interglacial Period: Two Case Studies of the Southern Chinese Loess Plateau

Author:

Wu TieniuORCID,Lin Henry,Zhang Hailin,Ye Fei,Wang Yongwu,Liu Muxing,Yi Jun,Tian Pei

Abstract

The hydraulic properties of paleosols on the Chinese Loess Plateau (CLP) are closely related to agricultural production and are indicative of the environmental evolution during geological and pedogenic periods. In this study, two typical intact sequences of the first paleosol layer (S1) on the southern CLP were selected, and soil hydraulic parameters together with basic physical and chemical properties were investigated to reveal the response of soil hydraulic properties to the warm and wet climate conditions. The results show that: (1) the paleoclimate in the southern CLP during the last interglacial period showed a pattern of three warm and wet sub-stages and two cool and dry sub-stages; (2) when the climate was warm and wet, the soil saturated hydraulic conductivity decreased and the content of macro-aggregates increased, and when the climate was cool and dry, the soil saturated hydraulic conductivity increased and the content of macro-aggregates decreased, indicating that the paleoclimate affected both the grain size of wind-blown sediment and pedogenic process; and (3) in the soil water characteristic curves, the soil water content showed variation in peaks and valleys, indicating that the dust source and pedogenesis of the paleosol affected the water holding capacity. The findings confirmed that on the southern CLP, the warm and wet climate improved soil aggregate stability and water holding capacity, while reducing soil water conductivity. These results reveal the response of soil hydraulic properties to the climate evolution on the southern CLP, which indicate soil water retention and soil moisture supply capacities under an ongoing global warming scenario.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3