Abstract
A novel nanocomposite of cellulose based on multiwalled carbon nanotube (MWCNT) was synthesized by a simple solution mixing–evaporation method. The morphology, thermal investigations, electrocatalytic oxidation of amitriptyline were analyzed at multi-walled carbon/cellulose nanocomposite in detail. The amitriptyline (AMT) drug was electrochemically studied in a phosphate buffer at different pH using the MWCNT/cellulose modified glassy carbon electrode (GCE). As per the linear relationship among AMT along with peak current, differential pulse voltammetry technique has been established for their quantitative pharmaceutical’s determination. The oxidation potential shifted negatively compared to GCE, showing that the MWCNT/cellulose modified electrode had an excellent catalytic activity for the AMT oxidation. The anodic peak current varied linear response with AMT’s concentration in the range of 0.5 to 20.0 μM with a LOD of 0.0845 μM and LOQ of 0.282 μM, respectively. The proposed method was effectively put on the determination of AMT in pharmaceutical and urine samples. This novel methodology is presented here as an example of a complete development methodology for the determination of amitriptyline drug and sensor for use in healthcare fields.
Funder
King Abdulaziz University
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献