Parameters Affecting Dust Collector Efficiency for Pneumatic Conveying: A Review

Author:

Beaulac Philippe,Issa MohamadORCID,Ilinca AdrianORCID,Brousseau Jean

Abstract

In a context of energy abundance for industrial applications, industrial systems are exploited with minimal attention to their actual energy consumption requirements to meet the loads imposed on them. As a result, most of them are used at maximal capacity, regardless of the varying operational conditions. First, the paper studies pneumatic conveying systems and thoroughly reviews previously published work. Then, we overview simulations and operating data of the experimental parameters and their effects on the flow characteristics and transport efficiency. Finally, we summarize with a conclusion and some suggestions for further work. The primary goal of this study is to identify the parameters that influence the energy consumption of industrial dust collector systems. It is differentiated from previously published overviews by being concentrated on wood particles collection systems. The results will permit a better selection of an appropriate methodology or solution for reducing an industrial system’s power requirements and energy consumption through more precise control. The anticipated benefits are not only on power requirement and energy consumption but also in reducing greenhouse gas emissions. This aspect shows more impacts in regions that rely on electricity supplied by thermal power stations, especially those that use petrol or coal.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3