Genetic Programming for High-Level Feature Learning in Crop Classification

Author:

Lu Miao,Bi YingORCID,Xue Bing,Hu Qiong,Zhang Mengjie,Wei Yanbing,Yang Peng,Wu Wenbin

Abstract

Information on crop spatial distribution is essential for agricultural monitoring and food security. Classification with remote-sensing time series images is an effective way to obtain crop distribution maps across time and space. Optimal features are the precondition for crop classification and are critical to the accuracy of crop maps. Although several approaches are available for extracting spectral, temporal, and phenological features for crop identification, these methods depend heavily on domain knowledge and human experiences, adding uncertainty to the final crop classification. This study proposed a novel Genetic Programming (GP) approach to learning high-level features from time series images for crop classification to address this issue. We developed a new representation of GP to extend the GP tree’s width and depth to dynamically generate either fixed or flexible informative features without requiring domain knowledge. This new GP approach was wrapped with four classifiers, i.e., K-Nearest Neighbor (KNN), Decision Tree (DT), Naive Bayes (NB), and Support Vector Machine (SVM), and was then used for crop classification based on MODIS time series data in Heilongjiang Province, China. The performance of the GP features was compared with the traditional features of vegetation indices (VIs) and the advanced feature learning method Multilayer Perceptron (MLP) to show GP effectiveness. The experiments indicated that high-level features learned by GP improved the classification accuracies, and the accuracies were higher than those using VIs and MLP. GP was more robust and stable for diverse classifiers, different feature numbers, and various training sample sets compared with classification using VI features and the classifier MLP. The proposed GP approach automatically selects valuable features from the original data and uses them to construct high-level features simultaneously. The learned features are explainable, unlike those of a black-box deep learning model. This study demonstrated the outstanding performance of GP for feature learning in crop classification. GP has the potential of becoming a mainstream method to solve complex remote sensing tasks, such as feature transfer learning, image classification, and change detection.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Non-profit Scientific Institution

Agricultural Science and Technology Innovation Program

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary Machine Learning in Environmental Science;Handbook of Evolutionary Machine Learning;2023-11-02

2. Survey of Crop Identification Using Hyperspectral Satellite Images;2023 IEEE International Conference on Contemporary Computing and Communications (InC4);2023-04-21

3. Crop mapping using supervised machine learning and deep learning: a systematic literature review;International Journal of Remote Sensing;2023-04-18

4. Monitoring Land Cover Change by Leveraging a Dynamic Service-Oriented Computing Model;Remote Sensing;2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3