Fast Seismic Landslide Detection Based on Improved Mask R-CNN

Author:

Fu Rao,He Jing,Liu GangORCID,Li WeileORCID,Mao Jiaqi,He Minhui,Lin Yuanyang

Abstract

For emergency rescue and damage assessment after an earthquake, quick detection of seismic landslides in the affected areas is crucial. The purpose of this study is to quickly determine the extent and size of post-earthquake seismic landslides using a small amount of post-earthquake seismic landslide imagery data. This information will serve as a foundation for emergency rescue efforts, disaster estimation, and other actions. In this study, Wenchuan County, Sichuan Province, China’s 2008 post-quake Unmanned Air Vehicle (UAV) remote sensing images are used as the data source. ResNet-50, ResNet-101, and Swin Transformer are used as the backbone networks of Mask R-CNN to train and identify seismic landslides in post-quake UAV images. The training samples are then augmented by data augmentation methods, and transfer learning methods are used to reduce the training time required and enhance the generalization of the model. Finally, transfer learning was used to apply the model to seismic landslide imagery from Haiti after the earthquake that was not calibrated. With Precision and F1 scores of 0.9328 and 0.9025, respectively, the results demonstrate that Swin Transformer performs better as a backbone network than the original Mask R-CNN, YOLOv5, and Faster R-CNN. In Haiti’s post-earthquake images, the improved model performs significantly better than the original model in terms of accuracy and recognition. The model for identifying post-earthquake seismic landslides developed in this paper has good generalizability and transferability as well as good application potential in emergency responses to earthquake disasters, which can offer strong support for post-earthquake emergency rescue and disaster assessment.

Funder

National Key Research and Development Program of China

Chengdu Technology Innovation R&D Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3