Whole-Transcriptome Sequencing of Ovary Reveals the ceRNA Regulation Network in Egg Production of Gaoyou Duck

Author:

Zhang Lei1,Zhu Rui1,Sun Guobo1,Wang Jian1,Zuo Qisheng2,Zhu Shanyuan1

Affiliation:

1. Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China

2. Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

Abstract

To investigate the regulatory mechanism of the competing endogenous RNAs (ceRNAs) on the egg performance of Gaoyou ducks, full transcriptome sequencing was performed to analyze the ovarian tissues in Gaoyou ducks. The ducks were categorized into high- and low-yield groups based on the individual in-cage egg production records and the hematoxylin–eosin (HE) staining results. The differentially expressed genes (DEGs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) were further processed by GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses. In total, 72 DEmRNAs; 23 DElncRNAs; 4 DEcircRNAs; and 5 signaling pathways, including the ovarian steroidogenesis, PI3K-Akt, hedgehog, tryptophan metabolism, and oocyte meiosis signaling pathways, were significantly enriched. These results suggest that they could be associated with the Gaoyou duck’s ovarian function and affect the total egg production or double-yolked egg production. Furthermore, a coregulation network based on the related candidate ceRNAs across the high- and low-yield egg production groups was constructed. Our findings provide new insights into the mechanisms underlying the molecular regulation of related circRNA/lncRNA–miRNA–mRNA in the egg production and double-yolked egg traits of Gaoyou ducks.

Funder

National Natural Science Foundation of China

Natural science foundation for the Jiangsu Higher Education Institutions of China

JBGS Project of Seed Industry Revitalization in Jiangsu Province

Jiangsu University Blue Project

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3