Gut Microbiota, Human Blood Metabolites, and Esophageal Cancer: A Mendelian Randomization Study

Author:

Li Xiuzhi1,Xu Bingchen2,Yang Han1,Zhu Zhihua3

Affiliation:

1. State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China

2. State Key Laboratory of Oncology in South China, Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China

3. State Key Laboratory of Oncology in South China, Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China

Abstract

Background: Unbalances in the gut microbiota have been proposed as a possible cause of esophageal cancer (ESCA), yet the exact causal relationship remains unclear. Purpose: To investigate the potential causal relationship between the gut microbiota and ESCA with Mendelian randomization (MR) analysis. Methods: Genome-wide association studies (GWASs) of 207 gut microbial taxa (5 phyla, 10 classes, 13 orders, 26 families, 48 genera, and 105 species) and 205 gut microbiota metabolic pathways conducted by the Dutch Microbiome Project (DMP) and a FinnGen cohort GWAS of esophageal cancer specified the summary statistics. To investigate the possibility of a mediation effect between the gut microbiota and ESCA, mediation MR analyses were performed for 1091 blood metabolites and 309 metabolite ratios. Results: MR analysis indicated that the relative abundance of 10 gut microbial taxa was associated with ESCA but all the 12 gut microbiota metabolic pathways with ESCA indicated no statistically significant association existing. Two blood metabolites and a metabolite ratio were discovered to be mediating factors in the pathway from gut microbiota to ESCA. Conclusion: This research indicated the potential mediating effects of blood metabolites and offered genetic evidence in favor of a causal correlation between gut microbiota and ESCA.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3